Оксиды способы получения и химические свойства. Классификация, получение и свойства оксидов

Вещества, составляющие основу нашего физического мира, состоят из разных видов химических элементов. Четыре из них встречаются чаще всех остальных. Это водород, углерод, азот и кислород. Последний элемент может связываться с частицами металлов или неметаллов и образовывать бинарные соединения - окислы. В нашей статье мы изучим наиболее важные способы получения оксидов в лабораторных условиях и промышленности. Также рассмотрим их основные физические и химические свойства.

Агрегатное состояние

Оксиды, или окислы, существуют в трех состояниях: газообразном, жидком и твердом. Например, к первой группе относятся такие известные и широко распространенные в природе соединения, как углекислый газ - CO 2 , угарный газ - CO, двуокись серы - SO 2 и другие. В жидкой фазе существуют такие окислы, как вода - H 2 O, серный ангидрид - SO 3 , оксид азота - N 2 O 3 . Получение оксидов, названных нами, можно осуществить в лаборатории, однако такие из них, как и трехокись серы, добывают и в промышленности. Это связано с применением этих соединений в технологических циклах выплавки железа и получения сульфатной кислоты. Угарным газом восстанавливают железо из руды, а серный ангидрид растворяют в сульфатной кислоте и добывают олеум.

Классификация окислов

Можно выделить несколько видов кислородсодержащих веществ, состоящих из двух элементов. Химические свойства и способы получения оксидов будут зависеть от того, к какой из перечисленных групп относится вещество. углерода, получают прямым соединением углерода с кислородом, проводя реакцию жесткого окисления. Углекислый газ можно выделить и в процессе обмена и сильных неорганических кислот:

HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

Какая же реакция является визитной карточкой кислотных оксидов? Это их взаимодействие со щелочами:

SO 2 + 2NaOH → Na 2 SO 3 + H 2 O

Амфотерные и несолеобразующие окислы

Безразличные окислы, например CO или N 2 O, не способны к реакциям, ведущим к появлению солей. С другой стороны, большинство кислотных оксидов могут вступать в реакцию с водой, образуя кислоты. Однако для оксида кремния это невозможно. Силикатную кислоту целесообразно получить косвенным путем: из силикатов, реагирующих с сильными кислотами. Амфотерными будут такие бинарные соединения с кислородом, которые способны к реакциям как со щелочами, так и с кислотами. В эту группу мы отнесем следующие соединения - это известные окислы алюминия и цинка.

Получение оксидов серы

В своих соединениях с кислородом сера проявляет различную валентность. Так, в сернистом газе, формула которого SO 2 , она четырехвалентна. В лаборатории диоксид серы получают в реакции между сульфатной кислотой и гидросульфитом натрия, уравнение которой имеет вид

NaHSO 3 + H 2 SO 4 → NaHSO 4 + SO 2 + H 2 O

Еще один способ добычи SO 2 - это окислительно-восстановительный процесс между медью и сульфатной кислотой высокой концентрации. Третий лабораторный метод получения оксидов серы - сжигание под вытяжкой образца простого вещества серы:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

В промышленности диоксид серы можно добыть выжиганием серосодержащих минералов цинка или свинца, а также обжигом пирита FeS 2 . Полученный таким методом сернистый газ используют для добычи трехокиси серы SO 3 и далее - сульфатной кислоты. Двуокись серы с другими веществами ведет себя как окись с кислотными признаками. Например, ее взаимодействие с водой приводит к образованию сульфитной кислоты H 2 SO 3:

SO 2 + H 2 O = H 2 SO 3

Данная реакция является обратимой. Степень диссоциации кислоты невелика, поэтому соединение относят к слабым электролитам, да и сама сернистая кислота может существовать только в водном растворе. В нем всегда присутствуют молекулы сернистого ангидрида, которые придают веществу резкий запах. Раагирующая смесь находится в состоянии равенства концентрации реагентов и продуктов, которое можно сместить, изменяя условия. Так, при добавлении к раствору щелочи реакция будет проходить слева направо. В случае выведения из сферы реакции сернистого ангидрида нагреванием или продуванием через смесь газообразного азота динамическое равновесие будет смещаться влево.

Серный ангидрид

Продолжим рассматривать свойства и способы получения оксидов серы. Если сжечь сернистый ангидрид, то в результате образуется оксид, в котором сера имеет степень окисления +6. Это трехокись серы. Соединение находится в жидкой фазе, быстро твердеет в виде кристаллов при температуре ниже 16 °С. Кристаллическое вещество может быть представлено несколькими аллотропными модификациями, отличающимися строением кристаллической решетки и температурами плавления. Серный ангидрид проявляет свойства восстановителя. Взаимодействуя с водой, он образует аэрозоль сульфатной кислоты, поэтому в промышленности H 2 SO 4 добывают, растворяя серный ангидрид в концентрированной В результате образуется олеум. Добавляя в него воду, и получают раствор серной кислоты.

Основные окислы

Изучив свойства и получение оксидов серы, относящихся к группе кислотных бинарных соединений с кислородом, рассмотрим кислородные соединения металлических элементов.

Основные окислы можно определить по такому признаку, как наличие в составе молекул частиц металлов главных подгрупп первой или второй групп периодической системы. Они относятся к щелочным или щелочноземельным. Например, окись натрия - Na 2 O может реагировать с водой, в результате чего образуются химически агрессивные гидроксиды - щелочи. Однако главное химическое свойство основных оксидов - это взаимодействие с органическими или неорганическими кислотами. Оно идет с образованием соли и воды. Если к белому порошковидному оксиду меди добавить соляной кислоты, то обнаружим голубовато-зеленый раствор хлорида меди:

CuO + 2HCl = CuCl 2 + H 2 O

Нагревание твердых нерастворимых гидроксидов - еще один важных способов получения основных оксидов:

Ca(OH) 2 → CaO + H 2 O

Условия: 520-580 °C.

В нашей статье мы рассмотрели наиболее важные свойства бинарных соединений с кислородом, а также способы получения оксидов в лаборатории и промышленности.

1. Окисление простых веществ кислородом (сжигание простых веществ):

2Mg + O 2 = 2МgО

4Р + 5O 2 = 2Р 2 О 5 .

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды (Na 2 O 2 , K 2 O 2) .

Не окисляются кислородом воздуха благородные металлы, напрмер, Аu, Аg, Рt.

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O 2 = 2ZnO + 2SO 2

2Н 2 S + 3O 2 = 2SO 2 + 2Н 2 О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

Сu(ОН) 2 СuО + Н 2 О

H 2 SO 3 SO 2 + H 2 O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО 3 СаО + СО 2

2Рb(NO 3) 2 2РbО + 4NO 2 + O 2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

1.1.7. Области применения оксидов.

Ряд природных минералов представляют собой оксиды (см. табл.7) и используются как рудное сырье для получения соответствующих металлов.

Например:

Боксит А1 2 O 3 · nH 2 O.

Гематит Fe 2 O 3 .

Магнетит FеО · Fe 2 O 3 .

Касситерит SnO 2 .

Пиролюзит МnO 2 .

Рутил ТiО 2 .

Минерал корунд (А1 2 O 3) обладающий большой твердостью, используют как абразивный материал. Его прозрачные, окрашенные в красный и синий цвет кристаллы представляют собой драгоценные камни – рубин и сапфир.

Негашеная известь (CaO) , получаемая обжигом известняка (СаСО 3) , находит широкое применение в строительстве, сельском хозяйстве и как реагент для буровых растворов.

Оксиды железа (Fе 2 О 3 , Fе 3 О 4) используются при бурении нефтяных и газовых скважин в качестве утяжелителей и реагентов-нейтрализаторов сероводорода.

Оксид кремния (IV) (SiO 2) в виде кварцевого песка широко используется для производства стекла, цемента и эмалей, для пескоструйной обработки поверхности металлов, для гидропескоструйной перфорации и при гидроразрыве в нефтяных и газовых скважинах. В виде мельчайших сферических частиц (аэрозоля) находит применение в качестве эффективного пеногасителя буровых растворов и наполнителя при производстве резинотехнических изделий (белая резина).

Ряд оксидов (А1 2 O 3 ,Cr 2 O 3 , V 2 O 5 , СuО, NО) используются в качестве катализаторов в современных химических производствах.

Являющийся одним из главных продуктов сгорания угля, нефти и нефтепродуктов углекислый газ (СО 2) при закачке в продуктивные пласты способствует повышению их нефтеотдачи. Используется СО 2 также для заполнения огнетушителей и газирования напитков.

Образующиеся при нарушении режимов сгорания топлива (NO, СО) или при сгорании сернистого топлива (SO 2) оксиды являются продуктами загрязняющими атмосферу. Современное производство, а также транспорт предусматривают строгий контроль за содержанием таких оксидов и их нейтрализацию,

Оксиды азота (NO, NO 2) и серы (SO 2 , SO 3) являются промежуточными продуктами в крупнотоннажных производствах азотной (НNO 3) и серной (Н 2 SО 4) кислот.

Оксиды хрома (Сг 2 O 3) и свинца (2РbО · РbО 2 – сурик) используются для производства антикоррозионных красочных составов.

Вопросы для самоконтроля по теме оксиды

1. На какие основные классы подразделяются все неорганические соединения?

2. Что такое оксиды?

3. Какие типы оксидов Вам известны?

4. Какие оксиды относятся к несолеобразующим (безразличным)?

5. Дайте определения: а) основной оксид, б) кислотный оксид,

в) амфотерный оксид.

6. Какие элементы образуют основные оксиды?

7. Какие элементы образуют кислотные оксиды?

8. Напишите формулы некоторых амфотерных оксидов.

9. Как составляются названия оксидов оксиды?

10. Назовите следующие оксиды: Cu 2 O, FeO, Al 2 O 3 , Mn 2 O 7 , SO 2 .

11. Изобразите формулы следующих оксидов графически: а) оксид натрия, б) оксид кальция, в) оксид алюминия, г) оксид серы (1V), д) оксид марганца (VII) . Укажите их характер.

12. Напишите формулы высших оксидов элементов II и III периодов. Назовите их. Как изменяется химический характер оксидов II и III периодов?

13. Каковы химические свойства а) основных оксидов, б) кислотных оксидов, г) амфотерных оксидов?

14. Какие оксиды реагируют с водой? Приведите примеры.

15. Докажите амфотерность следующих оксидов: а) оксид бериллия, б) оксид цинка, в) оксид олова (IV).

16. Какие способы получения оксидов Вам известны?

17. Напишите уравнения реакций получения всеми известными Вам способами следующих оксидов: а) оксид цинка, б) оксид меди (II), в) оксид кремния (1V).

18. Назовите некоторые из областей применения оксидов.

1.2. Основания

Оcнованиями называются химические вещества, распадающиеся (диссоциирующие) в водном растворе (или в расплаве) на положительно заряженные ионы металла и отрицательно заряженные ионы гидроксила (определение Аррениуса):

гидроксид натрия катион натрия гидроксид-ион

Основаниями являются сложные вещества, образующиеся при гидратации основных оксидов.

Например:

Na 2 O + H 2 O = NaOH – гидроксид натрия

BaO + H 2 O = Ва(ОН) 2 – гидроксид бария

1. Окисление простых веществ кислородом (сжигание простых веществ):

2 Mg + O 2 = 2М g О

4Р + 5 O 2 = 2Р 2 О 5 .

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды (Na 2 O 2 , K 2 O 2 ) .

Не окисляются кислородом воздуха благородные металлы, напрмер, А u , А g , Р t .

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O 2 = 2ZnO + 2SO 2

2 Н 2 S + 3O 2 = 2SO 2 + 2 Н 2 О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

С u (ОН) 2 С u О + Н 2 О

H 2 SO 3 SO 2 + H 2 O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО 3 СаО + СО 2

b (NO 3 ) 2 b О + 4 NO 2 + O 2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

1.1.7. Области применения оксидов.

Ряд природных минералов представляют собой оксиды (см. табл.7) и используются как рудное сырье для получения соответствующих металлов.

Например:

Боксит А1 2 O 3 · nH 2 O .

Гематит Fe 2 O 3 .

Магнетит F еО · Fe 2 O 3 .

Касситерит SnO 2 .

Пиролюзит М nO 2 .

Рутил Т i О 2 .

Минерал корунд (А1 2 O 3 ) обладающий большой твердостью, используют как абразивный материал. Его прозрачные, окрашенные в красный и синий цвет кристаллы представляют собой драгоценные камни - рубин и сапфир.

Негашеная известь (CaO ) , получаемая обжигом известняка (СаСО 3 ) , находит широкое применение в строительстве, сельском хозяйстве и как реагент для буровых растворов.

Оксиды железа (F е 2 О 3 , F е 3 О 4 ) используются при бурении нефтяных и газовых скважин в качестве утяжелителей и реагентов-нейтрализаторов сероводорода.

Оксид кремния (IV) (SiO 2 ) в виде кварцевого песка широко используется для производства стекла, цемента и эмалей, для пескоструйной обработки поверхности металлов, для гидропескоструйной перфорации и при гидроразрыве в нефтяных и газовых скважинах. В виде мельчайших сферических частиц (аэрозоля) находит применение в качестве эффективного пеногасителя буровых растворов и наполнителя при производстве резинотехнических изделий (белая резина).

Ряд оксидов (А1 2 O 3 , Cr 2 O 3 , V 2 O 5 , С u О, N О) используются в качестве катализаторов в современных химических производствах.

Являющийся одним из главных продуктов сгорания угля, нефти и нефтепродуктов углекислый газ (СО 2) при закачке в продуктивные пласты способствует повышению их нефтеотдачи. Используется СО 2 также для заполнения огнетушителей и газирования напитков.

Образующиеся при нарушении режимов сгорания топлива (NO, СО) или при сгорании сернистого топлива (SO 2) оксиды являются продуктами загрязняющими атмосферу. Современное производство, а также транспорт предусматривают строгий контроль за содержанием таких оксидов и их нейтрализацию,

Оксиды азота (NO, NO 2) и серы (SO 2 , SO 3) являются промежуточными продуктами в крупнотоннажных производствах азотной (НNO 3) и серной (Н 2 SО 4) кислот.

Оксиды хрома (Сг 2 O 3) и свинца (2РbО · РbО 2 - сурик) используются для производства антикоррозионных красочных составов.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Последние материалы раздела:

Мозаика император юстиниан со свитой
Мозаика император юстиниан со свитой

Равенна. Италия. Императрица Феодора со свитой. Мозаика. Середина VI в. Церковь Сан-Витале. Равенна. Италия. тинопольской черни, в то время...

Конкурсы для детей по биологии
Конкурсы для детей по биологии

Конкурс эрудитов (интеллектуальные и занимательные задания к циклу занятий по темам: «Царство Прокариоты», «Грибы», «Растения») для 6-7 классов....

Что ли Что ли знаки препинания
Что ли Что ли знаки препинания

В пунктуации русского языка существует немало правил, с которыми непросто разобраться. Ведь знаки препинания не только определяют границы фраз и...